214 research outputs found

    Customization design method for complex product systems based on a meta-model

    Get PDF
    In order to effectively reuse the design knowledge of product family life cycle development and support holistic and rapid individual product design, this article presents a new meta-model-based systemic customization design method for complex product systems within a product-pedigree. The proposed method aims to synthetically analyze the common and adaptive customer demands and product features of a product-pedigree of complex product systems and to quickly respond to the changing demands based on knowledge accumulation in the field of customization design. The key to implement such a method is (1) to construct a product-pedigree-oriented product meta-model with a four-layered architecture where it is possible to achieve a high degree of abstraction of product and (2) to develop a special technique for configuring the meta-model of the complex product systems. We have tested the proposed method with the rapid design of product-pedigree of a high-speed train’s bogies as an illustrative example. In this work, a rapid customization design prototype system has been developed and applied to the design of a high-speed train’s bogie to illustrate how to construct a product meta-model and how to conduct configuration design on different layers and variant design for generating new products

    Prediction of machining accuracy based on geometric error estimation of tool rotation profile in five-axis multi-layer flank milling process

    Get PDF
    In five-axis multi-layer flank milling process, the geometric error of tool rotation profile caused by radial dimension error and setup error has great influence on the machining accuracy. In this work, a new comprehensive error prediction model considering the inter-layer interference caused by tool rotation profile error is established, which incorporates a pre-existing prediction model dealing with a variety of errors such as geometric errors of machine tool, workpiece locating errors, and spindle thermal deflection errors. First, a series of tool contact points on the tool swept surface in each single layer without overlapping with others are calculated. Second, the position of the tool contact points on the overlapped layers is updated based on the detection and calculation of inter-layer interferences. Third, all evaluated tool contact points on the final machined surface are available for completing the accuracy prediction of the machined surface. A machining experiment has been carried out to validate this prediction model and the results show the model is effective

    Optimization method for systematically improving non-contact R test accuracy

    Get PDF

    Collaborative simulation method with spatiotemporal synchronization process control

    Get PDF
    When designing a complex mechatronics system, such as high speed trains, it is relatively difficult to effectively simulate the entire system’s dynamic behaviors because it involves multi-disciplinary subsystems. Currently, a most practical approach for multi-disciplinary simulation is interface based coupling simulation method, but it faces a twofold challenge: spatial and time unsynchronizations among multi-directional coupling simulation of subsystems. A new collaborative simulation method with spatiotemporal synchronization process control is proposed for coupling simulating a given complex mechatronics system across multiple subsystems on different platforms. The method consists of 1) a coupler-based coupling mechanisms to define the interfacing and interaction mechanisms among subsystems, and 2) a simulation process control algorithm to realize the coupling simulation in a spatiotemporal synchronized manner. The test results from a case study show that the proposed method 1) can certainly be used to simulate the sub-systems interactions under different simulation conditions in an engineering system, and 2) effectively supports multi-directional coupling simulation among multi-disciplinary subsystems. This method has been successfully applied in China high speed train design and development processes, demonstrating that it can be applied in a wide range of engineering systems design and simulation with improved efficiency and effectiveness

    Pre-quake frequency characteristics of Ms ≥7.0 earthquakes in mainland China

    Get PDF
    In this study, natural orthogonal expansion was performed on earthquake frequencies to compute the pre-quake frequency fields of 9 Ms ≥7.0 earthquakes in mainland China from 1980 to 2020. The temporal and spatial pre-quake anomalies of these earthquakes were extracted from their frequency fields. We found that the majority of pre-quake temporal anomalies (i.e., variations exceeding two-times the absolute mean square error) of a strong earthquake are condensed within the first four frequency fields, and typically comprise multiple components. The temporal factor of the first frequency field usually accounts for the largest proportion of these anomalies (40%–60% of the entire field). Most Ms ≥7.0 earthquakes exhibited long-term anomalies 5–8 years before their occurrence; some presented medium-term anomalies 1–2 years prior to the quake, and only a few presented short-term and imminent anomalies (≤3 months before the quake). Anomalous seismic hazard zones have high-gradient turning points in regional frequency-field contour maps, and the epicenters of strong earthquakes are often located in areas containing active faults that have contour values. Through the comparison of seismic frequency field and the traditional method of regional seismic activity frequency (3 months), it is shown that the frequency-field time factor has the advantages of diversified and rich abnormal information. The slope comparison between the frequency field and the cumulative frequency curve shows that the frequency anomaly time of the two is consistent, and the conclusion is reliable. Therefore, the seismic frequency method can predict the occurrence time and location of strong earthquakes, which is closer to the predictable seismic model

    A hyper-heuristic based ensemble genetic programming approach for stochastic resource constrained project scheduling problem

    Get PDF
    In project scheduling studies, to the best of our knowledge, the hyper-heuristic collaborative scheduling is first-time applied to project scheduling with random activity durations. A hyper-heuristic based ensemble genetic programming (HH-EGP) method is proposed for solving stochastic resource constrained project scheduling problem (SRCPSP) by evolving an ensemble of priority rules (PRs). The proposed approach features with (1) integrating the critical path method into the resource-based policy class to generate schedules; (2) improving the existing single hyper-heuristic project scheduling research to construct a suitable solution space for solving SRCPSP; and (3) bettering genetic evolution of each subpopulation from a decision ensemble with three different local searches in corporation with discriminant mutation and discriminant population renewal. In addition, a sequence voting mechanism is designed to deal with collaborative decision-making in the scheduling process for SRCPSP. The benchmark PSPLIB is performed to verify the advantage of the HH-EGP over heuristics, meta-heuristics and the single hyper-heuristic approaches

    Research on priority rules for the stochastic resource constrained multi-project scheduling problem with new project arrival

    Get PDF
    The resource constrained multi-project scheduling problem (RCMPSP) is a general and classic problem, which is usually considered and solved in a deterministic environment. However, in real project management, there are always some unforeseen factors such as one or more new project arrivals that give rise to intermittent changes in the activity duration (or stochastic duration) of the current project in execution by inserting the new project. This study takes two practical factors in terms of stochastic duration of project activities and new project arrivals waiting for insertion into account of the problem space to form a stochastic resource constrained multi-project scheduling problem with new project arrivals (SRCMPSP-NPA). Based on the benchmark of the PSPLIB (Project Scheduling Problem Library), a new data set is built and 20 priority rules (PRs) are applied to solve the problem and their performances are analyzed. In addition, a heuristic hybrid method is designed for solving the problem timely by dividing the entire scheduling process into multi-state scheduling problems solved by the corresponding rules separately. This approach has been verified by experiments and its performance is better than that of a single rule in most situations

    Strain fields of Ms >6.0 earthquakes in Menyuan, Qinghai, China

    Get PDF
    In predicting earthquakes, it is a major challenge to capture the time factor and spatial isoline anomalies, and understand their physical processes, of the seismic strain field before a strong earthquake. In this study, the seismic strain field was used as representative of seismic activity. The natural orthogonal function expansion method was used to calculate the seismic strain field before the Menyuan Ms 6.4 earthquakes in 1986 and 2016, and the Ms 6.9 earthquake in 2022. Time factor and spatial isoline anomaly of the strain field before each earthquake was extracted. We also compared the evolution of the strain field with numerical simulation results under the tectonic stress system at the source. The results showed that the time factor before the earthquakes had high or low value anomalies, exceeding the mean square error of the stable background. The anomalies were concentrated in the first four typical fields of the strain field, which has multiple components. The abnormal contribution rate of the first typical field is the largest (accounting for 42%–49% of the total field). The long- and medium-term anomalies appear 3-4, and 1-2 years before the earthquake, respectively. There were no short or immediate-term anomalies within 3 months of the earthquake. In addition, during the evolution of the strain field, the abnormal area of the spatial isoline changed with the change in time. Usually, the intersection area of the two isoseismic lines of strain accumulation and strain release becomes a potential location for strong earthquakes. Finally, we found that the high strain field values of the 1986 and 2016 Ms 6.4 earthquakes were equivalent to the numerical simulation results, while the high strain field values of the 2022 Menyuan Ms 6.9 earthquakes were slightly different, but within the accepted error range. These results indicate that the two methods are consistent. We have shown that the natural orgthagonal method can be used to obtain the spatiotemporal anomaly information of strain field preceding strong earthquakes

    How to model and implement connections between physical and virtual models for digital twin application

    Get PDF
    Digital twin (DT) is a virtual mirror (representation) of a physical world or a system along its lifecycle. As for a complex discrete manufacturing system (DMS), it is a digital model for emulating or reproducing the functions or actions of a real manufacturing system by giving the system simulation information or directly driven by a real system with proper connections between the DT model and the real-world system. It is a key building block for smart factory and manufacturing under the Industry 4.0 paradigm. The key research question is how to effectively create a DT model during the design stage of a complex manufacturing system and to make it usable throughout the system's lifecycle such as the production stage. Given that there are some existing discussions on DT framework development, this paper focuses on the modeling methods for rapidly creating a virtual model and the connection implementation mechanism between a physical world production system at a workshop level and its mirrored virtual model. To reach above goals, in this paper, the discrete event system (DES) modeling theory is applied to the three-dimension DT model. First, for formally representing a manufacturing system and creating its virtual model, seven basic elements: controller, executor, processor, buffer, flowing entity, virtual service node and logistics path of a DMS have been identified and the concept of the logistics path network and the service cell is introduced to uniformly describe a manufacturing system. Second, for implementing interconnection and interaction, a new interconnection and data interaction mechanism between the physical system and its virtual model for through-life applications has been designed. With them, each service cell consists of seven elements and encapsulates input/output information and control logic. All the discrete cells are constructed and mapped onto different production-process-oriented digital manufacturing modules by integrating logical, geometric and data models. As a result, the virtual-physical connection is realized to form a DT model. The proposed virtual modeling method and the associated connection mechanism have been applied to a real-world workshop DT to demonstrate its practicality and usefulness
    • …
    corecore